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1. INTRODUCTION

The di!erential quadrature method (DQM) is a numerical technique introduced in
the early 1970s by Bellman and his associates [1, 2] for the solution of initial and
boundary value problems. The method has been applied to a variety of physical
problems including transport processes, static and dynamic structural mechanics,
and hydrodynamic lubrication. An exhaustive list of the literature on the DQM and
its developmental history may be found in a recent survey paper by the present
authors [3]. The general e!ectiveness of the DQM and its analytical simplicity have
made it a possible alternative to the well-known "nite di!erence and "nite element
methods.

Due to its very basis, the DQM may be applied very easily to regions having
boundaries aligned to the reference co-ordinate axes. Thus, the domains considered
in early applications of the DQM have been line domains for one-dimensional and
axisymmetric problems and rectangular domains for plane problems. Recently, the
DQM was applied to the analysis of vibration and buckling of skew and rhombic
plates using oblique co-ordinate axes [4]. More recently, the DQM was applied to
curvilinear quadrilateral domains by using the technique of natural-to-Cartesian
geometric mapping [5]. To do this, the quadrature rules were reformulated using
the serendipity-family interpolation functions. However, with such functions, the
mapping cannot be exact except at the nodal points of the boundary; indeed, this
matter requires very careful consideration of the boundary conditions.

The di$culties of mapping boundaries of curvilinear quadrilateral domains can
be eliminated by using blending functions which permit exact mapping [6]. These
functions have been used in "nite element analysis [7}9], but they are introduced
for the "rst time to the DQM in the present work.

In the following, the procedure for constructing the quadrature rules for
curvilinear quadrilateral domains via geometric mapping by blending functions is
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described. Next, the quadrature formulation of the vibration problem of thin plates
is considered for application of the proposed methodology. The free vibration
frequencies calculated for sectorial plates with simply supported and clamped edges
are compared with available data.

2. MAPPING AND QUADRATURE RULES

Let the "eld domain of interest be a curvilinear quadrilateral region in the
Cartesian x}y plane; see Figure 1(a). The geometric mapping of this domain may be
achieved from a square parent domain, !1)m)1, !1)g)1 located in the
natural m}g plane; see Figure 1(b). This mapping is carried by use of blending
functions [6}9]
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the corner points of the quadrilateral region. It is noted that the geometric mapping
of the boundaries of the quadrilateral domain by the blending functions of equation
(1) is exact.

Now, consider the quadrature rules for the "rst order derivatives of a function
f with respect to the m, g co-ordinates in the parent square domain of Figure 1(b). At
a sampling point (m

i
, g

j
) of the quadrature grid in the square domain (Figure 2)

these rules may be expressed as [1, 3]
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Figure 1. Domains: (a) curvilinear quadrilateral region in the Cartesian x}y plane; (b) a square
parent domain in the natural m}g plane.



Figure 2. A quadrature grid.
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By the chain rule of di!erentiation,
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where DJ D is the determinant of the Jacobian J"L(x, y)/L(m, g).
Using equations (2) in equations (3), one obtains the quadrature rules for the "rst
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where m, n"(i!1)Ng#j, j"1, 2,2, Ng , i"1, 2,2, Nm , Nmg"Nm]Ng , and
A(1)

mn
and B (1)
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are the weighting coe$cients of the "rst order derivatives.

The general quadratures rules in the mapped region may be written as
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in which the weighting coe$cients may be obtained from the recurrence
relationships [3, 5]

[A(r)]"[A(1)][A(r~1)], [B(s)]"[B(1)][B(s~1)] (r, s*2),

[C(rs)]"[A(r)][B(s)] (r, s*1). (7)

3. THE THIN PLATE VIBRATION PROBLEM

The governing di!erential equation of the mode function="= (X, > ) of free
harmonic vibration of a thin isotropic plate in a dimensionless form is

=
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where X, >"x/a, y/a are dimensionless Cartesian co-ordinates in the plane of the
midplane of the plate, X"ua2(oh/D)1@2 is the dimensionless frequency, u is
a natural frequency, a, h, and D are, respectively, a characteristic in-plane
dimension, thickness, and #exural rigidity of the plate; and o is the density of the
plate material. Also,=

,XXXX
"L4=/LX4, etc.

The boundary conditions of a clamped edge (zero de#ection and zero normal
rotation) and a simply supported edge (zero de#ection and zero normal moment)
are
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where h is the angle between the normal to the plate boundary and the x-axis.
Using equations (6), one obtains the following quadrature analogs of equation (8)

and (9):

Nmg
+
n/1

MA(4)
mn

#2C(22)
mn

#B(4)
mn

N=
n
"X2=

m
, (10)

=
m
"0,

Nmg
+
n/1

M(cos h
m
)A(1)

mn
#(sin h

m
)B(1)

mn
N=

n
"0;

Nmg
+
n/1

M(cos2h
m
#l sin2h

m
)A(2)

mn
#(sin2h

m
#l cos2h

m
)B(2)

mn

#2(1!l)(cos h
m

sin h
m
)C(11)

mn
N=

n
"0. (11)

4. NUMERICAL RESULTS

The foregoing DQM formulation was employed for calculating free vibration
frequencies of sectorial plates with various types of boundary conditions. The plate
geometry is shown in Figure 3. Here, in Table 1, sample results are given for two
types of plates, namely, a SSSS plate, simply supported (S) all over the four edges,
and a SCSC plate, simply supported on the radial edges and clamped (C) on the



Figure 3. A concentric, circular, sectorial region.

TABLE 1

¹he ,rst four free vibration frequencies of sectorial plates (l"0)3)

Modes

Nm"Nh 1 2 3 4 1 2 3 4

SSSS plate SCSC plate
Exact analytical solution [10]
* 68)379 150)98 189)60 278)39 107)57 178)82 269)49 305)84

Eight-term orthogonal-polynomial Rayleigh}Ritz solution [10]
68)379 150)98 189)60 278)39 107)57 178)82 269)49 305)84

DQM solution with blending functions
11 68)379 150)98 189)60 278)17 107)57 178)82 269)51 305)63
12 68)379 150)98 189)60 278)42 107)57 178)82 269)49 305)88
13 68)379 150)98 189)60 278)38 107)57 178)82 269)49 305)84
14 68)379 150)89 189)60 278)39 107)57 178)82 269)49 305)84
15 68)379 150)98 189)60 278)39 107)57 178)82 269)49 305)84

DQM solution with cubic serendipity interpolation functions [5]
11 68)364 150)94 189)62 279)31 107)57 178)79 269)52 305)58
12 68)378 150)91 189)57 278)38 107)57 178)79 269)49 305)84
13 68)376 150)95 189)60 278)12 107)57 178)79 269)50 305)80
14 68)379 150)95 189)60 278)34 107)57 178)79 269)50 305)80
15 68)378 150)95 189)60 278)35 107)57 178)79 269)50 305)80
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circumferential edges. For each plate a/b"2, /"453. Table 1 also includes
the exact analytical results obtained by Kim and Dickinson [10] using the
methodology of Ramakrishnan and Kunukkaseril [11], as well as an eight-term
orthogonal polynomial Rayleigh}Ritz solution [10] and the results from reference
[5] in which a DQM solution was obtained by using cubic serendipity-family
interpolation functions.

Comparing the results obtained using the various methods, it is noted that all
three sets of numerical-method results for both types of plates agree very closely
with the exact results, mostly to "ve signi"cant "gures and in some instances to
only four. Also, it is apparent that blending-function mapping leads to an
improvement in the convergence of the DQM.

5. CONCLUDING REMARKS

An improved methodology for use with the di!erential quadrature method,
based on the use of blending functions for the mapping, has been introduced and
successfully validated for the case of free vibration of sectorial plates with two
di!erent sets of boundary conditions.
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